Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Virol ; 96(12): e0047522, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35604215

RESUMO

Herpes simplex virus 1 (HSV-1) maintains a lifelong latent infection in neurons and periodically reactivates, resulting in the production of infectious virus. The exact cellular pathways that induce reactivation are not understood. In primary neuronal models of HSV latency, the cellular protein dual leucine zipper kinase (DLK) has been found to initiate a wave of viral gene expression known as phase I. Phase I occurs independently of both viral DNA replication and the activities of histone demethylase enzymes required to remove repressive heterochromatin modifications associated with the viral genome. In this study, we investigated whether phase I-like gene expression occurs in ganglia reactivated from infected mice. Using the combined trigger of explant-induced axotomy and inhibition of phosphatidylinositide 3-kinase (PI3K) signaling, we found that HSV lytic gene expression was induced rapidly from both sensory and sympathetic neurons. Ex vivo reactivation involved a wave of viral late gene expression that occurred independently of viral genome synthesis and histone demethylase activity and preceded the detection of infectious virus. Importantly, we found that DLK was required for the initial induction of lytic gene expression. These data confirm the essential role of DLK in inducing HSV-1 gene expression from the heterochromatin-associated genome and further demonstrate that HSV-1 gene expression during reactivation occurs via mechanisms that are distinct from lytic replication. IMPORTANCE Reactivation of herpes simplex virus from a latent infection is associated with clinical disease. To develop new therapeutics that prevent reactivation, it is important to understand how viral gene expression initiates following a reactivation stimulus. Dual leucine zipper kinase (DLK) is a cellular protein that has previously been found to be required for HSV reactivation from sympathetic neurons in vitro. Here, we show that DLK is essential for reactivation from sensory ganglia isolated from infected mice. Furthermore, we show that DLK-dependent gene expression ex vivo occurs via mechanisms that are distinct from production replication, namely, lytic gene expression that is independent of viral DNA replication and histone demethylase activity. The identification of a DLK-dependent wave of lytic gene expression from sensory ganglia will ultimately permit the development of novel therapeutics that target lytic gene expression and prevent the earliest stage of reactivation.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , MAP Quinase Quinase Quinases , Ativação Viral , Animais , Replicação do DNA , DNA Viral , Expressão Gênica , Genoma Viral , Herpesvirus Humano 1/fisiologia , Heterocromatina , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Zíper de Leucina , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Ativação Viral/fisiologia , Latência Viral , Replicação Viral
3.
EMBO Rep ; 22(9): e52547, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34197022

RESUMO

Herpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalize with PML-NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Interferon Tipo I , Animais , Genoma Viral , Herpes Simples/genética , Herpesvirus Humano 1/genética , Interferon Tipo I/genética , Camundongos , Latência Viral
4.
Elife ; 92020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33350386

RESUMO

Herpes simplex virus-1 (HSV-1) establishes a latent infection in neurons and periodically reactivates to cause disease. The stimuli that trigger HSV-1 reactivation have not been fully elucidated. We demonstrate HSV-1 reactivation from latently infected mouse neurons induced by forskolin requires neuronal excitation. Stimuli that directly induce neurons to become hyperexcitable also induced HSV-1 reactivation. Forskolin-induced reactivation was dependent on the neuronal pathway of DLK/JNK activation and included an initial wave of viral gene expression that was independent of histone demethylase activity and linked to histone phosphorylation. IL-1ß is released under conditions of stress, fever and UV exposure of the epidermis; all known triggers of clinical HSV reactivation. We found that IL-1ß induced histone phosphorylation and increased the excitation in sympathetic neurons. Importantly, IL-1ß triggered HSV-1 reactivation, which was dependent on DLK and neuronal excitability. Thus, HSV-1 co-opts an innate immune pathway resulting from IL-1 stimulation of neurons to induce reactivation.


Assuntos
Herpesvirus Humano 1/fisiologia , Interleucina-1beta/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neurônios/virologia , Ativação Viral/fisiologia , Animais , Herpes Simples/imunologia , Herpes Simples/metabolismo , Camundongos , Latência Viral/fisiologia
5.
Virology ; 522: 81-91, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30014861

RESUMO

Herpes simplex virus (HSV) establishes a latent infection in peripheral neurons and can periodically reactivate to cause disease. Reactivation can be triggered by a variety of stimuli that activate different cellular processes to result in increased HSV lytic gene expression and production of infectious virus. The use of model systems has contributed significantly to our understanding of how reactivation of the virus is triggered by different physiological stimuli that are correlated with recrudescence of human disease. Furthermore, these models have led to the identification of both common and distinct mechanisms of different HSV reactivation pathways. Here, we summarize how the use of these diverse model systems has led to a better understanding of the complexities of HSV reactivation, and we present potential models linking cellular signaling pathways to changes in viral gene expression.


Assuntos
Infecções por Herpesviridae/virologia , Simplexvirus/fisiologia , Ativação Viral , Infecções por Herpesviridae/patologia , Humanos , Modelos Biológicos
6.
Virology ; 493: 238-46, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27062579

RESUMO

The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A Subtipo H1N1/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Sítios de Ligação , Brônquios/citologia , Influenza Pandêmica, 1918-1919 , Ácido N-Acetilneuramínico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Traqueia/citologia , Replicação Viral
7.
J Histochem Cytochem ; 63(5): 312-28, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25604814

RESUMO

Primary normal human bronchial/tracheal epithelial (NHBE) cells, derived from the distal-most aspect of the trachea at the bifurcation, have been used for a number of studies in respiratory disease research. Differences between the source tissue and the differentiated primary cells may impact infection studies based on this model. Therefore, we examined how well-differentiated NHBE cells compared with their source tissue, the human distal trachea, as well as the ramifications of these differences on influenza A viral pathogenesis research using this model. We employed a histological analysis including morphological measurements, electron microscopy, multi-label immunofluorescence confocal microscopy, lectin histochemistry, and microarray expression analysis to compare differentiated NHBEs to human distal tracheal epithelium. Pseudostratified epithelial height, cell type variety and distribution varied significantly. Electron microscopy confirmed differences in cellular attachment and paracellular junctions. Influenza receptor lectin histochemistry revealed that α2,3 sialic acids were rarely present on the apical aspect of the differentiated NHBE cells, but were present in low numbers in the distal trachea. We bound fluorochrome bioconjugated virus to respiratory tissue and NHBE cells and infected NHBE cells with human influenza A viruses. Both indicated that the pattern of infection progression in these cells correlated with autopsy studies of fatal cases from the 2009 pandemic.


Assuntos
Brônquios/citologia , Células Epiteliais/citologia , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/virologia , Traqueia/citologia , Antígenos Virais/metabolismo , Brônquios/virologia , Diferenciação Celular , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Humanos , Pandemias , Receptores Virais/metabolismo , Traqueia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...